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Because of the potential speedup, parallel algorithms have recently been 
developed for improving serial applications in ocean and coastal 
hydrodynamics and water quality simulations. Developing a parallel 
program, however, is a difficult task that requires special and expensive 
processing resources. Motivated by the potential benefits of parallelization, 
this paper develops a load-balanced parallel architecture on OpenMP to 
improve on an in-house serial two-dimensional water quality simulation 
model to a parallel application named PARATUNA-WQ. Analysis of the 
performance of speedup is discussed to justify the use of parallel architecture 
in water quality simulation model. Speedup achieved by PARATUNA-WQ is 
close to the maximum theoretical speedup predicted by the Amdahl Law. 
Further enhancement for application to very large computational domain 
consisting of 25 million computational nodes is possible by integrating MPI 
architecture into the framework of OpenMP, the result of which will be 
reported in a subsequent paper. 
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1. Introduction

*Because of the potential speedup, parallel
algorithms have recently been developed for 
improving serial applications in ocean and coastal 
hydrodynamics and water quality simulations. 
Writing a parallel program is a difficult task that 
requires special and expensive processing resources. 
Motivated by the potential benefit of parallelization, 
this paper develops a load-balanced parallel 
application named PARATUNA-WQ on OpenMP to 
improve on an in-house serial two-dimensional 
water quality simulation model TUNA-WQ. Fast 
urban development along coastal regions worldwide 
to accommodate growing populations has led to 
increasingly severe pollution in the coastal water. An 
example would be the Mekong River and its Delta, 
flowing for some 4000 km from the head water in 
Tibet to the estuary in Ho Chi Minh City. 
Enhancement of water quality in the Mekong could 
benefit from fruitful research in robust mathematical 
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simulation models. These models are useful for 
assessing the cost-effectiveness of competing 
treatment technology and control measures. Such 
mathematical model simulations lead to the spatial-
temporal distributions of selected key water quality 
parameters to permit optimal choice of management 
options. We have earlier developed a serial water 
quality simulation model code-named TUNA-WQ to 
simulate the hydrodynamics and pollutant transport 
in offshore, coastal and estuarine systems based 
upon serial architectures (Chong et al., 2016). The 
main code TUNA is designed to simulate the two-
dimensional vertically integrated hydrodynamic 
flows subject to tidal influence, initial and boundary 
conditions. Other forcing terms include an abrupt 
vertical uplift of ocean seabed that generates a 
tsunami (Koh et al., 2009; Teh et al., 2009). For 
realistic and accurate simulation of tsunami, it is 
essential to consider large computational domains 
with high spatial resolutions in the near shore 
coastal regions. This requirement gives rise to a 
scenario with a large number of computational 
nodes, frequently exceeding 10 million nodes, 
resulting in long computational time in excess of 
hours or even days. Hence, it is necessary to speed 
up the computational time in order to render the 
model robust. One approach is to utilize the power of 
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parallel architecture involving simultaneous run of 
many processors. Similarly, the modelling of 
transport of pollutants with long half-life such as 
radioactive isotopes transported over a large oceanic 
space would require long computational time. 
Likewise, simulation of the aquatic ecosystems in the 
Mekong over the annual cycles would require 
several days of runtime. Parallel architecture may be 
used to speed up the computing time. In parallel 
computing, it is essential to provide an evenly 
distributed load balance of computational tasks 
among the participating processors (Dongarra et al., 
2003; Liu and Liu, 2003). Good load balancing and 
effective traffic control are the keys to efficient 
parallelization (Wang et al., 2012). In the following 
section, we provide a brief overview of 
parallelization of four serial water quality simulation 
models for improving their performance. 

2. Overview of parallelization 

Firstly, TELEMAC is an integrated modelling suite 
for simulating offshore, coastal and estuarine 
systems, subject to free-surface flows, including 
flooding and drying processes. It has been 
undergoing continuous enhancement by the French 
EDF for the past 20 years. The TELEMAC suite 
includes (a) TELEMAC-2D for solving the depth-
integrated shallow water equations to simulate the 
coastal environment when the horizontal length 
scale of the flow is greater than the vertical scale, 
and (b) TELEMAC-3D where the full Navier–Stokes 
equations are solved (Hervouet, 2007). 

TELEMAC-2D has been used for simulating tidal 
currents off the coast of Brittany in France in the 
vicinity of a renewable energy marine turbine farm 
to estimate available energy. TELEMAC-3D has been 
used for assessing the effects of fresh water 
discharges on the salinity distribution in a coastal 
lagoon Berre Lagoon in southern France (Moulinec 
et al., 2011). 

The authors implemented parallel architecture on 
the original serial TELEMAC codes to optimize 
performance made available by High Performance 
Computing (HPC) on several high-end platforms. 
Secondly, a parallel numerical simulation model 
CONDIFP was developed for the analysis of depth-
averaged convection–diffusion problems on the 
Caltech Center for Advanced Computing Research 
Intel Touchstone Delta System, using up to 512 
computational processors with an aggregate peak 
speed of 38.4 gigaflops and 19.5 gigabytes of 
memory. The original serial CONDIFP encountered 
the problem with uneven load distributions (Pirozzi, 
1997). 

A subsequent parallel improvement overcomes 
this uneven load allocation problem implemented on 
the Intel Paragon XP/S Model L38 Platform to 
illustrate the parallel versatility and reliability 
(Pirozzi and Zicarelli, 2000). Thirdly, a serial 
estuarine hydrodynamic and sediment transport 
model has been parallelized by Message Passing 
Interface (MPI) method based on domain 

decomposition techniques on IBM/SP2 machine 
using High Performance Fortran HPF FORTRAN 90 
code and applied to study tidal currents and 
sediment transports in the Belgian coast (Yu et al., 
1998). Fourthly, MPI method based on domain 
decomposition techniques has also been used to 
parallelize serial estuarine hydrodynamic and 
sediment transport model SW2D code. The parallel 
model PARSW2D is applied to analyze tidal currents 
and sediment transports in the estuary and offshore 
area of Zhejiang in China with good performance, 
reducing computational time by a factor of 30 to less 
than one day of computation time for simulation of 
annual sediment transport by tidal currents 
(Wenlong et al., 2014). Other achievements have 
been reported in the parallelization of two-
dimensional shallow water depth-integrated 
hydrodynamic and sediment transport model (Wang 
and Zhang 2009; Yang and Cai, 2011).  

3. Serial TUNA-WQ 

TUNA-WQ is a serial two dimensional vertically-
integrated water quality model that simulates tidal 
dynamics and pollutant transport to study the 
ecological and water quality scenarios in an aquatic 
environment. TUNA-WQ consists of two modules, 
namely hydrodynamics model TUNA and transport 
model WQ. The TUNA module solves the two-
dimensional shallow water equations, as shown in 
Eqs. 1-3, using an explicit staggered finite difference 
method, while WQ module solves the transport 
equation, as shown in Eq. 4. 
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Here, η (m) is water elevation above mean sea 

level, H (m) is mean water depth, U (m/s) and V 
(m/s) are velocity components in x- and y- 
directions, g (m/s2) is gravitational acceleration, n 
(s/m1/3) is Manning’s friction coefficient, S (kg/m3) is 
concentration of a substance, Ex (m2/s) and Ey (m2/s) 
are dispersions in x- and y- directions, α (s-1) is decay 
rate of the substance and W (kg/s) is loading rate. 

TUNA-WQ was originally developed with Fortran 
77, but upgraded to Fortran 90 with its pseudocode 
displayed in Fig. 1. Upon execution, an input file is 
required to initialize constant parameters and loop 
controls with user defined values. This is followed by 
dynamic allocations of array for all dependent 
variables to setup the computational domain (i.e. 
number of computational nodes). The simulation 
will then begin, after computing the initial 
conditions, up to a user defined number of iterations 
N. In each iteration, η in Eq. 1 is first computed using 
the U and V from the previous iteration. After 
computing the boundary conditions, Eqs. 2 and 3 are 
solved by using the η computed from the current 
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iteration. Eq. 4 is then solved for S using the U and V 
computed from the current iteration. At the end of 
every iteration, outputs such as concentration and 
velocity field can be stored at a user defined interval. 

 

 
Fig. 1: Pseudocode of TUNA-WQ 

4. Runtime analysis of serial TUNA-WQ 

We first present the computational runtime 
analysis for the serial TUNA-WQ. For this purpose, a 
computational domain consisting of a channel with 
dimension of 20 km by 10 km in x- and y- directions 
respectively and a mean water depth of 10 m chosen. 
A tidal wave of amplitude of 1.0 m and wave period 
of 12.42 hours flowing in west-east direction in the 
open channel is simulated with a substance being 
released at the center of the domain. The simulation 
setup is summarized in Table 1. 

 
Table 1: Computational domain and simulation setup 

Nodes ∆x ∆t Iteration N T = N × ∆t 
201×101 100 m 1 s 172800 48 hours 

 

TUNA-WQ is compiled using Intel Visual Fortran 
(IVF) Compiler 16.0 and the simulation is performed 
in Windows 10 Pro with Intel Core i5-4460 
Processor (6M Cache, 3.2 GHz). The total runtime for 
this simulation is 43.875 s. Three simulation 
snapshots of concentration and velocity field at time 
t = 38, 41 and 44 hours are displayed in Fig. 2. 

In addition, an application of software 
performance analysis, namely Intel VTune Amplifier, 
is utilized to perform a profiling on TUNA-WQ 
simulation to investigate time spent in each 
computational subroutine. In this simulation, the 
computation of transport Eq. 4 is the most time-
consuming component, taking up 48.02% of the total 
runtime. This is followed by the computations of Eqs. 
2 and 3, taking up 20.63% and 19.48% of the total 
runtime, respectively, as displayed in Fig. 3. On the 
other hand, the computations of boundary 
conditions and substance release have the least 

impact among the computational subroutines. Note 
that, the sum of time spent in computational 
subroutine shown in Fig. 3 is 99.31%, whereas the 
remaining 0.69% of total runtime is taken up by 
other subroutines. 

 

 
Fig. 2: TUNA-WQ simulation snapshots 

 

 
Fig. 3: Time spent in TUNA-WQ computational 

subroutines 

5. OpenMP parallelization in PARATUNA-WQ 

In this section, we parallelize the computational 
subroutines in TUNA-WQ by means of OpenMP 
(Open Multi-Processing) implementation. OpenMP is 
an implementation of multi-threading, a method of 
parallelization whereby a master thread (with 
thread ID 0) forks out a specified number of slave 
threads (with thread ID > 0) and divides a task 
allocation among them. The threads, including 
master and slave, then run concurrently within a 
parallel region. Upon exiting the parallel region, all 
slave threads will join back into the master thread, 
resulting in serial process to continue until the end 
of the program. 

The profiling results for TUNA-WQ previously 
obtained via VTune Amplifier indicated that the 
computation subroutines within the loop of 
ITERATION < N takes up 99.31% of runtime. 
Therefore, we construct a parallel region to 
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accommodate the loop using !$OMP PARALLEL 
directive with data attribute clauses default, shared 
and private, as displayed in Fig. 4. The clause default 
(none) is used to ensure that each variable in the 
parallel region is declared using either shared or 
private clause for careful implementation. In 
PARATUNA-WQ, all dynamic allocated array 
variables and constant parameters are declared as 
shared, allowing the data to be visible and accessible 
by all threads simultaneously. On the other hand, all 
dummy variables, loop counters and dummy loop 
counters are declared as private, allowing each 
thread to have a local copy and later use it in !$OMP 
DO SCHEDULE directive. Note that, a subroutine 
CPU_TIME() and OpenMP runtime subroutine 
OMP_GET_WTIME() are called before and after the 
execution of parallel region to record the elapsed 
CPUs time and elapsed wall clock time for 
investigating the performance of parallelized 
PARATUNA-WQ.  

 

 
Fig. 4: Implementation of OpenMP directives in TUNA-WQ 

 
To parallelize the computations within the loop of 

ITERATION < N, the !$OMP DO SCHEDULE directive 
is implemented on the computations of Eqs. 1-4. The 
directive !$OMP DO SCHEDULE is a work-sharing 
construct that ‘chops’ the number of iterations in 
chunk and later assigns the chunk to threads 
according to the defined scheduling clause. In this 
parallelization of PARATUNQ-WQ, the dynamic 
scheduling clause is implemented. In dynamic 
scheduling clause, the number of iterations is 
‘chopped’ using a specified integer of chunk which is 
assigned to each thread. Once a particular thread 
finishes its chunk, it returns to get another chunk 
from the loop that is left. In this paper, chunk = 10 is 
used in dynamic scheduling clause. Furthermore, 
!$OMP SINGLE directive is implemented in the 

computations of boundary conditions and substance 
release, because these computational subroutines do 
not consume much simulation runtime. 

The simulation described above is repeated for 
five times using both serial and parallel TUNA-WQ to 
compare the total runtime, as summarized in Table 
2. The parallel implementation of OpenMP in 
PARATUNA-WQ reduces the runtime from 43.8587 s 
in TUNA-WQ to 18.6556 s in PARATUNA-WQ, 
resulting in a speedup factor of 2.35, with four CPUs. 
In addition, Intel VTune Amplifier is utilized to 
monitor the number of CPUs simultaneously utilized 
throughout the simulation. As observed in Fig. 5, the 
parallel process (more than 1 active CPUs) in TUNA-
WQ takes up 12.49 s, while the serial process (1 
active CPU) takes up 4.49 s, indicating 67% of the 
simulation runtime is taken up in parallel process.  

 
Table 2: Comparison of total runtime between serial 

TUNA-WQ and parallel PARATUNA-WQ 

Simulation 
Total runtime (s) 

Speedup (Ts/ 
Tp) 

TUNA-WQ 
(Ts) 

PARATUNA-
WQ (Tp) 

1 43.8750 18.7292 2.34 
2 43.9062 18.8110 2.33 
3 43.5906 18.8011 2.32 
4 44.0625 18.4854 2.38 
5 43.8594 18.4511 2.38 

Average 43.8587 18.6556 2.35 

 

 
Fig. 5: Number of CPUs simultaneously utilized 

6. Amdahl law 

Amdahl’s law states that the maximum speed up 
in parallelizing a serial algorithm is limited 
asymptotically by the serial fraction f of the code, as 
given in Eq. 5, in which m is the number of 
processors (Kathavate and Srinath, 2014). The serial 
fraction f of the code is the component that is not 
possible to parallelize. With increasing values of m, 
theoretical speedup reaches the limiting asymptotic 
value of 1/f. For OpenMP PARATUNA-WQ, f is 
approximately 0.2, implying the limiting theoretical 
speedup of 5.0 when m becomes very large. In 
OpenMP implementation of PARATUNA-WQ, m is 4, 
giving theoretical speedup = 2.5, compared to the 
actual speedup of 2.35. A higher theoretical speedup 
of 4 can be obtained with 16 processors. Further 
increase in speedup is no longer significant beyond 
16 processors. It should be noted that Amdahl’s law 
assumes that the percentage of serial code f is 
independent of the problem size, which is not 
necessarily true, as overhead and synchronization 
tends to decrease with increasing computational 
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nodes. Hence, the fraction f of time spent on 
executing serial code decreases with increase in 
problem size, for example increase in number of 
computational nodes (Padua, 2011). With very large 
number of computational nodes, the theoretical 
speedup is given by Eq. 6, known as the Gustafson 
Law. Fig. 6 display the theoretical speedup given by 
the Amdahl Law as a function of m, with three 
different values of f. Fig. 7 shows the comparison of 
speedup predicted by the Amdahl Law and Gustafson 
Law, indicating significant deviation between the 
two theoretical estimates. 

 

𝑠𝑝𝑒𝑒𝑑𝑢𝑝𝐴𝑚𝑑𝑎ℎ𝑙 =
1

𝑓+(1−𝑓) 𝑚⁄
                                            (5) 

𝑠𝑝𝑒𝑒𝑑𝑢𝑝𝐺𝑢𝑠𝑡𝑎𝑓𝑠𝑜𝑛 = 𝑚 − 𝑓(𝑚 − 1)                  (6) 

 

 
Fig. 6: Amdahl law 

 

 
Fig. 7: Gustafson law versus Amdahl law for f = 0.2 

7. Discussions 

Running the MPI applications with several MPI 
processes but using only one single processor 
machine gives a good pre-indication about the 
speedup behavior of MPI applications, before 
running them on real powerful cluster machines or 
on an expensive parallel system. This approach was 
applied to reasonably predict the speedup of MPI 
applications that solve the wave equation and prime 
numbers generator problems using multiple physical 
processors (El-Nashar, 2011). In an upcoming paper, 
we will report our research findings on the 
performance of PARATUNA-RP that is used to 
simulate tsunami run-up heights and inundation 
distances along coastal beaches. PARATUNA-RP 
parallel architecture is based upon integrating MPI 
architecture into the framework of OpenMP. 
Parallelizing serial applications requires dedicated 
and expensive processing resources, prompting a 
debate between the overhead cost of parallelization 
and the benefit of speedup. The nature of the 
problem (for example the size of computational 

domain) is one of the most important factors that 
affect the parallel speedup. If the problem can be 
divided into independent subdomains with minimal 
communication-other than to split up the domain 
and to combine the final results-then this is a great 
parallelization opportunity, with the parallel 
applications exhibiting an almost linear speed up 
(Padua, 2011).  

Parallel applications on the OpenMP 
programming platform has been shown to achieve 
significant speedup compared to the serial 
algorithm. For example, the parallel algorithm for 
the simple matrix multiplication on the OpenMP 
performs better than the sequential algorithm, with 
a maximum speedup of 1.96 achieved with only two 
processors, which is almost equal to the theoretical 
speedup of 2.00 with m = 2 and f = 0.0, by the 
Amdahl Law. However, the improvement in 
performance gained by the use of multi-processors 
depends very much on the algorithms used and their 
implementation. In particular, possible gains are 
limited by the fraction f of the algorithm that can be 
run in parallel simultaneously on multi-processors, 
an effect that is described by the Amdahl's law 
(Kathavate and Srinath, 2014). The parallelized 
application using OpenMP can further be fine-tuned 
and improved by reducing the value of f using the 
facilities provided by the Intel Vtune Amplifier tool. 
The parallel algorithms using OpenMP interface has 
been used for computing the solution of dense 
system of linear equations, for computing the value 
of Pi and for analyzing the speedup of parallel 
algorithms on multi-processor system. The 
numerical experiments show that the parallel 
algorithms achieve good performance in terms of 
speedup compared to the serial application (Sharma 
and Gupta, 2012).  

8. Conclusion 

This paper has presented a successful parallel 
implementation of a two dimensional vertically-
integrated water quality application PARATUNA-WQ 
on OpenMP. It is noted that the value of f will 
decrease and the speedup will increase with 
increasing size of computational domain. Hence 
parallelization of serial tsunami model TUNA on 
large computational domain will achieve speedup 
closer to the theoretical speedup if many multi-
processors are used. As noted earlier, an optimal 
number of processors should be around 16, in which 
case the speedup is close to the asymptotic upper 
bound given by 1/f.  

The next upcoming paper will address the 
implementation of parallel algorithm on existing 
serial TUNA, with the hope of achieving a speedup of 
at least 10. With a computational domain consisting 
of 25 million nodes, existing serial TUNA took 7 days 
runtime. The parallel PARATUNA, however, will take 
less than one day of runtime to simulate. We hope to 
implement PARATUNA-WQ for studying the Mekong 
aquatic ecosystems in the future. 
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